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Purpose of this presentation

In this presentation, I want:

• Summarize the factor model using machine learning methods in recent years.

• Discuss the Neuron Network approach.

• Go through financial instruments that worth to be studied in my future research.
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Literature

Reference paper:
• “A Factor Model for Option Returns” Buchner and Kelly (2022)

• “Empirical Asset Pricing via Machine Learning”
Gu Kelly and Xiu (2020)

• “Deep Learning in Asset Pricing” Chen Pelger and Zhu (2019)

• “Characteristics are Covariances: A Unified Model of Risk and Return”
Kelly, Pruitt and Su (2019)

• “A Neural Network-Based Framework for Financial Model Calibration”
Liu Borovykh Grzelak and Oosterlee (2019)

• “Cross Section of Option Returns and Idiosyncratic Stock Volatility”
Cao and Han (2013), Only theoretical part
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Roadmap
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Background Knowledge
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Theoretical base

All of our modeling methods are based on the No-Arbitrage pricing theory by Lucas
(1987)
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Theoretical base

Target of machine learning

• For stocks: Maximize the mis-pricing. By Chen et. al (2020)

minω maxg
1
N

∑N
j=1

∥∥∥E [(
1−

∑N
i=1 ω (It ,Ct,i )R

e
t+1,i

)
Re
t+1,jg (It ,Ct,j)

]∥∥∥2
• For options: Using the delta-hedging strategy. By Cao and Han (2013)
Delta-hedged gain measures the change in the value of a self-financing portfolio
consisting of a long call position, hedged by a short position in the underlying stock.
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Here Π[t,t+τ ] is the excess dollar return of delta-hedged call option.
Normalize it to make it comparable across stocks: Π(t, t + τ)/ (∆tSt − Ct) 7 / 37



Background knowledge about options

Option Greeks:

• [δ:]Delta is the amount an option price is expected to move based on a 1 change in the
underlying stock.
As a general rule, in-the-money options will move more than out-of-the-money options,
and short-term options will react more than longer-term options to the same price change
in the stock.

• [θ:]Time decay:

• The factors are difficult to ascertain a priori.
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Background knowledge about options

Option Greeks:

• [ν:]Vega is the amount call and put prices will change, in theory, for a corresponding
one-point change in implied volatility.

• [ρ:]Rho is the amount an option value will change in theory based on a one
percentage-point change in interest rates.

• [γ:]Gamma is a measure of sensitivity to jump risk, which is an important driver of
option’s factor betas.
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Background knowledge about options

Review the Black-Scholes Model:

Based on:
dSt = µStdt + σStdzt
European call pricing:
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• C: call option price

• N: CDF if the normal
distribution

• St : spot price of an asset

• K: strike price

• r: risk-free interest rate

• t: time to maturity

• δ volatility of the asset

Auxiliary variables are:

• D = e−rτ : discount
factor

• F = erτS = S
D is the

forward delta of the
underlying asset, and
S = DF
(∆Fwd

it =
∆i ,t · edi,t(Ti−t)/365)
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Background knowledge about options

Risk sources:

This will be used in the IPCA interpretation.

• Overall risk of the volatility

• Maturity risk

• Risk from moneyness skew of the volatility surface
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Machine Learning Algorithms
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Summary about machine learning methods
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General information

Why Machine Learning?

Including the no-arbitrage constraint in the learning algorithm significantly improves the risk
premium signal/noise ratio, and makes it possible to better explain individual stock returns.

Importance of the loss function
(https://machinelearningmastery.com/
loss-and-loss-functions-for-training-deep-learning-neural-networks/):

Loss function is an evaluation of a machine learning model.

Where we can find loss functions?
There are many forms of loss function, here are two examples:

• in Chen et.al (2019): L
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• in Liu et.al (2019): L(θ) := D(f (x),F (x | θ)) with target: argminθ L(θ | (X,Y))
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PCA

PCA and IPCA are discussed in Kelly et.al (2019), Buchner and Kelly (2022).
They use the PCA to estimate SDF as a linear function of characteristics: wi ,t = θ⊤li ,t

PCA and IPCA are based on the assumption that loadings (β) are linear in
characteristics.

Code reference:
https://mpelger.people.stanford.edu/data-and-code

https://github.com/bkelly-lab/ipca
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PCA

Algorithm of PCA
PCA computes a set of input variables, and transforming them into a set of uncorrelated
variables, called PCs.
This transformation behaves in way such that the first PC explains the largest possible
variance, so on so forth.

Algorithm of IPCA:
On top of PCA model, IPCA explicitly accounts for time variation in individual asset behavior
by allowing risk factor loadings, βi ,t , to depend on observable asset characteristics.
The characteristics serve as instrumental variables for conditional betas, which avoids the
limitations of static betas in time series regression.
It can be interpreted as capturing three flavors of risk:

1. Overall level of volatility surface.

2. Maturity risk that summarized by the term structure slope of the volatility surface.

3. Moneyness Skew of the volatility surface.
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PCA

Algorithm of IPCA:
Model for an excess return ri ,t+1

ri ,t+1 = αi ,t + βi ,t ft+1 + ϵi ,t+1,

αi ,t = z ′i ,tΓα + vα,i ,t , βi ,t = z ′i ,tΓβ + vβ,i ,t .

• ft+1: Latent factors

• βi ,t :

1. Instrumenting the estimation of latent factor loadings with observable factors.
2. Incorporating time-varying instruments to estimate dynamic factor loadings.

• Γβ: The matrix mapping from a potentially large characteristics to limited factors.

• Any behavior of dynamic loadings that is orthogonal to instruments will absorbed by νβ,i ,t
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PCA

The target of IPCA
Will be recaped on page 32.
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PCA

Pros and Cons

• PCA:
Pros: Requiring no ex ante knowledge of the structure of average returns.

Cons:
1. PCA is inapt for estimating conditional versions of ri,t+1 = αi,t + β′

i,t ft+1 + ϵi,t+1 since it can
only cope with static loadings.

2. PCA lacks the flexibility for a researcher to incorporate other data beyond returns to help
identify a successful asset pricing model.

• IPCA:
Pros: Allow dynamics in the model, and brings information beyond just returns into
estimation of factors and betas

Cons: Compared to RNN models, this model cannot depict the information
learning process.
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Feed forward Algorithm - ANN

• ANN (CaNN)
The basic ANN is the multi-layer perceptron (MLP), which can be written as a composite
function:
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)
;θ(2)

)
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)
where θ(i) = (wi ,bi ) ,

bwi is a weight matrix and bi is a bias vector.
Layers in this model could be written as:
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where φ (w1jxj + b1j) is the neuron’s basis function, m is the number of neurons in a
hidden layer. This form also allows a backward learning process.
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Feed forward Algorithm - ANN

Algorithm graph in Liu et.al (2019)
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Feed forward Algorithm - FFN

The target is to setup a function from input x to y: y = f (x)

• They choose the rectified linear unit (ReLU): ReLU (xk) = max (xk , 0)

• The hidden layers: x (1) =
(
x
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1 , . . . , x

(1)

K (1)

)
and it depends on the parameters:
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0

• The output layer is simply a linear transformation of the output from the hidden layer:
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Feed forward Algorithm - FFN
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Feed forward Algorithm - FFN

Steps in Chen et.al (2019) They applied FFN in estimating x = [It , It,i ]:

• They acquired the optimal weights in GAN.

• Get the optimal instrumrnts for the moment conditions in GAN.

• Calculate the conditional mean return.

• Get the second moment (y = Re
t+1,iFt+1)
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Feed forward Algorithm

Where it was applied to

• ANN (Artificial Neural Network or Calibration using ANNs): In Liu et.al (2019)

• FFN: In Chen et.al (2019)

Pros and Cons

• This model outperforms tree learning approaches and other linear and nonlinear prediction
models

• Cons: In the real trading process, there will be dynamics between the last term’s output
and this term’s input. FFN cannot depict the dynamic by itself.
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Recurrent Neural Network

RNNs are a family of neural networks for processing sequences of data. They estimate
non-linear time-series dependencies for vector valued sequences in a recursive form.

• LSTM: The LSTM is designed to deal with lags of unknown and potentially long
duration in the time series, which makes it well-suited to detect business cycles.

• GAN: The GAN includes two models: A generative model G (detects the data
distribution) and a discriminative model D (shows the probability that sample coming out
of G. They play a two-player game and reach out to a unique solution that maximize the
probability that D makes mistakes. Hence no Markov chain is needed.
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Recurrent Neural Network - LSTM

Algorithm of LSTM (Long-Short Term Memory): relevant code:
https://github.com/topics/long-short-term-memory
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Recurrent Neural Network - LSTM

Where it was applied to

• LSTM: Chen Pelger and Zhu (2019)

Pros and Cons
• Pros: The LSTM approach can deal with both the large dimensionality of the system and a

very general functional form of the states while allowing for long-term dependencies.

• Cons: This type of structure is powerful if only the immediate past is relevant, but it is not
suitable if the time series dynamics are driven by events that are further back in the past.

• In Chen et.al, they constructed LSTM that deals with unknown and potentially long duration
in the time series, so that they can detect business cycles.
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Recurrent Neural Network - GAN

Algorithm of GAN (Generative Adversarial Network ):

Code reference:
https://github.com/LouisChen1992/Deep_Learning_in_Asset_Pricing

https://github.com/goodfeli/adversarial
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Recurrent Neural Network - GAN

Steps:

• Obtain an initial guess of the SDF by updating the SDF network to minimize the
unconditional loss.

• For a given SDF network, maximize the loss by varying the parameters in the conditional
network.

• Fix the parameters in the conditional network and train the SDF network to minimize the
conditional loss

instead of directly using It as an input each network summarizes the whole macroeconomic
time series information in the state process ht (respectively hgt for the conditional network):{
ω̂, ĥt , ĝ , ĥ

g
t

}
= arg minω,ht maxg ,hgt L

(
ω | ĝ , hgt , ht , It,i

)
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Recurrent Neural Network - GAN

Where it was applied to

• GAN: Chen Pelger and Zhu (2019)

Pros and Cons - Haven’t discussed yet
I may detect the weakness of this kind of setting and improve it as a topic.
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Evaluation of fitness

Target of the literature

• Minimize the sum of squared composite model errors. By Kelly et.al (2019), Gu
et.al (2020).
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Evaluation of fitness

Target of the literature

• Explained variation (Left) and cross-sectional mean (Right). By Chen et.al (2020)
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Goodness-of-fit measure. By Kelly,Pruitt and Su (2019), Buchner and Kelly
(2022), Chen et.al (2020):
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where λ̂ denotes the unconditional time-series mean of the factors.
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Overall evaluation

This result is summarized in Chen (2020)

Model SR (Train) SR (Valid) SR (Test)
FF-3 0.27 −0.09 0.19
FF-5 0.46 0.37 0.22
IPCA 1.05 1.17 0.47

RtnFcst 0.63 0.41 0.27
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Potential Extension
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Recurrent Neural Network and dynamics

Here the basic intuition is to use the dynamic between the return on the underlying assets of
last term as an input of the derivative’s return of the current term.

• Apply models used in options pricing to other instruments.
CDO or CDS index: reference Wang et.al (2009) “Pricing Tranches of a CDO and a CDS
Index: Recent Advances and Future Research”

• Chen et.al didn’t apply their RNN into option pricing model, but it of worth to do so.
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The End
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